Recolección de datos de la población sujeta a estudio (Muestreo).

MUESTREO PROBABILÍSTICO

Forman parte de este tipo de muestreo todos aquellos métodos para los que puede calcularse la probabilidad de extracción de cualquiera de las muestras posibles. Este conjunto de técnicas de muestreo es el más aconsejable, aunque en ocasiones no es posible optar por él. En este caso se habla de muestras probabilísticas, pues no es razonable hablar de muestras representativas dado que no conocemos las características de la población.

Muestreo aleatorio simple

El muestreo aleatorio simple puede ser de dos tipos:
Sin reposición de los elementos: cada elemento extraído se descarta para la subsiguiente extracción. Por ejemplo, si se extrae una muestra de una "población" de bombillas para estimar la vida media de las bombillas que la integran, no será posible medir más que una vez la bombilla seleccionada.
Con reposición de los elementos: las observaciones se realizan con reemplazamiento de los individuos, de forma que la población es idéntica en todas las extracciones. En poblaciones muy grandes, la probabilidad de repetir una extracción es tan pequeña que el muestreo puede considerarse sin reposición aunque, realmente, no lo sea.
Para realizar este tipo de muestreo, y en determinadas situaciones, es muy útil la extracción de números aleatorios mediante ordenadores, calculadoras o tablas construidas al efecto.
PROCEDIMIENTO DE LA TABLA DE NUMEROS ALEATORIOS
Codificar numéricamente cada elemento de la población (se puede usar una existente, caso de las facturas). Determinar el numero de cifras a tomar en la tabla según el tamaño de población. Ejemplo: Si N=350 se tomaran números de
Determinar la orientación de la selección tanto en forma vertical como horizontal. Ejemplo: De izquierda a derecha y de arriba hacia abajo. Iniciar al azar la selección en la tabla y tantos números como tamaño de la muestra, Identificar los elementos de la población según los números elegidos en la tabla.

Muestreo estratificado

Consiste en la división previa de la población de estudio en grupos o clases que se suponen homogéneos respecto a característica a estudiar. A cada uno de estos estratos se le asignaría una cuota que determinaría el número de miembros del mismo que compondrán la muestra.
Según la cantidad de elementos de la muestra que se han de elegir de cada uno de los estratos, existen dos técnicas de muestreo estratificado:
  • Asignación proporcional: el tamaño de cada estrato en la muestra es proporcional a su tamaño en la población.
  • Asignación óptima: la muestra recogerá más individuos de aquellos estratos que tengan más variabilidad. Para ello es necesario un conocimiento previo de la población.
Por ejemplo, para un estudio de opinión, puede resultar interesante estudiar por separado las opiniones de hombres y mujeres pues se estima que, dentro de cada uno de estos grupos, puede haber cierta homogeneidad. Así, si la población está compuesta de un 55% de mujeres y un 45% de hombres, se tomaría una muestra que contenga también esa misma proporción.

Muestreo sistemático

Se utiliza cuando el universo o población es de gran tamaño, o ha de extenderse en el tiempo. Primero hay que identificar las unidades y relacionarlas con el calendario (cuando proceda). Luego hay que calcular una constante, que se denomina coeficiente de elevación K= N/n; donde N es el tamaño del universo y n el tamaño de la muestra. Determinar en qué fecha se producirá la primera extracción, para ello hay que elegir al azar un número entre 1 y K; de ahí en adelante tomar uno de cada K a intervalos regulares. Ocasionalmente, es conveniente tener en cuenta la periodicidad del fenómeno.

Muestreo por estadios múltiples

Esta técnica es la única opción cuando no se dispone de lista completa de la población de referencia o bien cuando por medio de la técnica de muestreo simple o estratificado se obtiene una muestra con unidades distribuidas de tal forma que resultan de difícil acceso. En el muestreo a estadios múltiples se subdivide la población en varios niveles ordenados que se extraen sucesivamente por medio de un procedimiento de embudo. El muestreo se desarrolla en varias fases o extracciones sucesivas para cada nivel.
Por ejemplo, si tenemos que construir una muestra de profesores de primaria en un país determinado, éstos pueden subdividirse en unidades primarias representadas por circunscripciones didácticas y unidades secundarias que serían los propios profesores. En primer lugar extraemos una muestra de las unidades primarias (para lo cual debemos tener la lista completa de estas unidades) y en segundo lugar extraemos aleatoriamente una muestra de unidades secundarias de cada una de las primarias seleccionadas en la primera extracción.

Muestreo por conglomerados

Técnica similar al muestreo por estadios múltiples, se utiliza cuando la población se encuentra dividida, de manera natural, en grupos que se supone que contienen toda la variabilidad de la población, es decir, la representan fielmente respecto a la característica a elegir, pueden seleccionarse sólo algunos de estos grupos o conglomerados para la realización del estudio.
Dentro de los grupos seleccionados se ubicarán las unidades elementales, por ejemplo, las personas a encuestar, y podría aplicársele el instrumento de medición a todas las unidades, es decir, los miembros del grupo, o sólo se le podría aplicar a algunos de ellos, seleccionados al azar. Este método tiene la ventaja de simplificar la recogida de información muestral.
Cuando, dentro de cada conglomerado, se extraen los individuos que formarán parte de la muestra por m.a.s., el muestreo se llama bietápico.
Las ideas de estratificación y conglomerados son opuestas. El primer método funciona mejor cuanto más homogénea es la población respecto del estrato, aunque más diferentes son éstos entre sí. En el segundo, ocurre lo contrario. Los conglomerados deben presentar toda la variabilidad, aunque deben ser muy parecidos entre sí.

Resultado de imagen para datos de la población sujeta a estudio (muestreo). ejercicios

Comentarios

Entradas más populares de este blog

Ejercicios resueltos de conjuntos diagrama de venn

EJERCICIOS COEFICIENTE DE VARIACION

Ejercicio de moda, media, mediana y varianza